Paper Reading AI Learner

Beyond Duplicates: Towards Understanding and Predicting Link Types in Issue Tracking Systems

2022-04-27 12:57:12
Clara Marie Lüders, Abir Bouraffa, Walid Maalej

Abstract

Software projects use Issue Tracking Systems (ITS) like JIRA to track issues and organize the workflows around them. Issues are often inter-connected via different links such as the default JIRA link types Duplicate, Relate, Block, or Subtask. While previous research has mostly focused on analyzing and predicting duplication links, this work aims at understanding the various other link types, their prevalence, and characteristics towards a more reliable link type prediction. For this, we studied 607,208 links connecting 698,790 issues in 15 public JIRA repositories. Besides the default types, the custom types Depend, Incorporate, Split, and Cause were also common. We manually grouped all 75 link types used in the repositories into five general categories: General Relation, Duplication, Composition, Temporal / Causal, and Workflow. Comparing the structures of the corresponding graphs, we observed several trends. For instance, Duplication links tend to represent simpler issue graphs often with two components and Composition links present the highest amount of hierarchical tree structures (97.7%). Surprisingly, General Relation links have a significantly higher transitivity score than Duplication and Temporal / Causal links. Motivated by the differences between the link types and by their popularity, we evaluated the robustness of two state-of-the-art duplicate detection approaches from the literature on the JIRA dataset. We found that current deep-learning approaches confuse between Duplication and other links in almost all repositories. On average, the classification accuracy dropped by 6% for one approach and 12% for the other. Extending the training sets with other link types seems to partly solve this issue. We discuss our findings and their implications for research and practice.

Abstract (translated)

URL

https://arxiv.org/abs/2204.12893

PDF

https://arxiv.org/pdf/2204.12893.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot