Paper Reading AI Learner

AutoLossGen: Automatic Loss Function Generation for Recommender Systems

2022-04-27 19:49:48
Zelong Li, Jianchao Ji, Yingqiang Ge, Yongfeng Zhang

Abstract

In recommendation systems, the choice of loss function is critical since a good loss may significantly improve the model performance. However, manually designing a good loss is a big challenge due to the complexity of the problem. A large fraction of previous work focuses on handcrafted loss functions, which needs significant expertise and human effort. In this paper, inspired by the recent development of automated machine learning, we propose an automatic loss function generation framework, AutoLossGen, which is able to generate loss functions directly constructed from basic mathematical operators without prior knowledge on loss structure. More specifically, we develop a controller model driven by reinforcement learning to generate loss functions, and develop iterative and alternating optimization schedule to update the parameters of both the controller model and the recommender model. One challenge for automatic loss generation in recommender systems is the extreme sparsity of recommendation datasets, which leads to the sparse reward problem for loss generation and search. To solve the problem, we further develop a reward filtering mechanism for efficient and effective loss generation. Experimental results show that our framework manages to create tailored loss functions for different recommendation models and datasets, and the generated loss gives better recommendation performance than commonly used baseline losses. Besides, most of the generated losses are transferable, i.e., the loss generated based on one model and dataset also works well for another model or dataset. Source code of the work is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2204.13160

PDF

https://arxiv.org/pdf/2204.13160.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot