Paper Reading AI Learner

Keep the Caption Information: Preventing Shortcut Learning in Contrastive Image-Caption Retrieval

2022-04-28 09:55:28
Maurits Bleeker, Andrew Yates, Maarten de Rijke

Abstract

To train image-caption retrieval (ICR) methods, contrastive loss functions are a common choice for optimization functions. Unfortunately, contrastive ICR methods are vulnerable to learning shortcuts: decision rules that perform well on the training data but fail to transfer to other testing conditions. We introduce an approach to reduce shortcut feature representations for the ICR task: latent target decoding (LTD). We add an additional decoder to the learning framework to reconstruct the input caption, which prevents the image and caption encoder from learning shortcut features. Instead of reconstructing input captions in the input space, we decode the semantics of the caption in a latent space. We implement the LTD objective as an optimization constraint, to ensure that the reconstruction loss is below a threshold value while primarily optimizing for the contrastive loss. Importantly, LTD does not depend on additional training data or expensive (hard) negative mining strategies. Our experiments show that, unlike reconstructing the input caption, LTD reduces shortcut learning and improves generalizability by obtaining higher recall@k and r-precision scores. Additionally, we show that the evaluation scores benefit from implementing LTD as an optimization constraint instead of a dual loss.

Abstract (translated)

URL

https://arxiv.org/abs/2204.13382

PDF

https://arxiv.org/pdf/2204.13382.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot