Paper Reading AI Learner

Resource-efficient domain adaptive pre-training for medical images

2022-04-28 04:29:32
Yasar Mehmood, Usama Ijaz Bajwa, Xianfang Sun

Abstract

The deep learning-based analysis of medical images suffers from data scarcity because of high annotation costs and privacy concerns. Researchers in this domain have used transfer learning to avoid overfitting when using complex architectures. However, the domain differences between pre-training and downstream data hamper the performance of the downstream task. Some recent studies have successfully used domain-adaptive pre-training (DAPT) to address this issue. In DAPT, models are initialized with the generic dataset pre-trained weights, and further pre-training is performed using a moderately sized in-domain dataset (medical images). Although this technique achieved good results for the downstream tasks in terms of accuracy and robustness, it is computationally expensive even when the datasets for DAPT are moderately sized. These compute-intensive techniques and models impact the environment negatively and create an uneven playing field for researchers with limited resources. This study proposed computationally efficient DAPT without compromising the downstream accuracy and robustness. This study proposes three techniques for this purpose, where the first (partial DAPT) performs DAPT on a subset of layers. The second one adopts a hybrid strategy (hybrid DAPT) by performing partial DAPT for a few epochs and then full DAPT for the remaining epochs. The third technique performs DAPT on simplified variants of the base architecture. The results showed that compared to the standard DAPT (full DAPT), the hybrid DAPT technique achieved better performance on the development and external datasets. In contrast, simplified architectures (after DAPT) achieved the best robustness while achieving modest performance on the development dataset .

Abstract (translated)

URL

https://arxiv.org/abs/2204.13280

PDF

https://arxiv.org/pdf/2204.13280.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot