Paper Reading AI Learner

Cross-View Cross-Scene Multi-View Crowd Counting

2022-05-03 15:03:44
Qi Zhang, Wei Lin, Antoni B. Chan

Abstract

Multi-view crowd counting has been previously proposed to utilize multi-cameras to extend the field-of-view of a single camera, capturing more people in the scene, and improve counting performance for occluded people or those in low resolution. However, the current multi-view paradigm trains and tests on the same single scene and camera-views, which limits its practical application. In this paper, we propose a cross-view cross-scene (CVCS) multi-view crowd counting paradigm, where the training and testing occur on different scenes with arbitrary camera layouts. To dynamically handle the challenge of optimal view fusion under scene and camera layout change and non-correspondence noise due to camera calibration errors or erroneous features, we propose a CVCS model that attentively selects and fuses multiple views together using camera layout geometry, and a noise view regularization method to train the model to handle non-correspondence errors. We also generate a large synthetic multi-camera crowd counting dataset with a large number of scenes and camera views to capture many possible variations, which avoids the difficulty of collecting and annotating such a large real dataset. We then test our trained CVCS model on real multi-view counting datasets, by using unsupervised domain transfer. The proposed CVCS model trained on synthetic data outperforms the same model trained only on real data, and achieves promising performance compared to fully supervised methods that train and test on the same single scene.

Abstract (translated)

URL

https://arxiv.org/abs/2205.01551

PDF

https://arxiv.org/pdf/2205.01551.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot