Paper Reading AI Learner

Explain and Conquer: Personalised Text-based Reviews to Achieve Transparency

2022-05-03 20:04:32
Iñigo López-Riobóo Botana (1), Verónica Bolón-Canedo (1), Bertha Guijarro-Berdiñas (1), Amparo Alonso-Betanzos (1) ((1) University of A Coruña - Research Center on Information and Communication Technologies (CITIC))

Abstract

There are many contexts where dyadic data is present. Social networking is a well-known example, where transparency has grown on importance. In these contexts, pairs of items are linked building a network where interactions play a crucial role. Explaining why these relationships are established is core to address transparency. These explanations are often presented using text, thanks to the spread of the natural language understanding tasks. We have focused on the TripAdvisor platform, considering the applicability to other dyadic data contexts. The items are a subset of users and restaurants and the interactions the reviews posted by these users. Our aim is to represent and explain pairs (user, restaurant) established by agents (e.g., a recommender system or a paid promotion mechanism), so that personalisation is taken into account. We propose the PTER (Personalised TExt-based Reviews) model. We predict, from the available reviews for a given restaurant, those that fit to the specific user interactions. PTER leverages the BERT (Bidirectional Encoders Representations from Transformers) language model. We customised a deep neural network following the feature-based approach. The performance metrics show the validity of our labelling proposal. We defined an evaluation framework based on a clustering process to assess our personalised representation. PTER clearly outperforms the proposed adversary in 5 of the 6 datasets, with a minimum ratio improvement of 4%.

Abstract (translated)

URL

https://arxiv.org/abs/2205.01759

PDF

https://arxiv.org/pdf/2205.01759.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot