Paper Reading AI Learner

Mixed-effects transformers for hierarchical adaptation

2022-05-03 19:34:15
Julia White, Noah Goodman, Robert Hawkins

Abstract

Language use differs dramatically from context to context. To some degree, modern language models like GPT-3 are able to account for such variance by conditioning on a string of previous input text, or prompt. Yet prompting is ineffective when contexts are sparse, out-of-sample, or extra-textual; for instance, accounting for when and where the text was produced or who produced it. In this paper, we introduce the mixed-effects transformer (MET), a novel approach for learning hierarchically-structured prefixes -- lightweight modules prepended to the input -- to account for structured variation. Specifically, we show how the popular class of mixed-effects models may be extended to transformer-based architectures using a regularized prefix-tuning procedure with dropout. We evaluate this approach on several domain-adaptation benchmarks, finding that it efficiently adapts to novel contexts with minimal data while still effectively generalizing to unseen contexts.

Abstract (translated)

URL

https://arxiv.org/abs/2205.01749

PDF

https://arxiv.org/pdf/2205.01749.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot