Paper Reading AI Learner

Learning from Drivers to Tackle the Amazon Last Mile Routing Research Challenge

2022-05-09 01:54:07
Chen Wu, Yin Song, Verdi March, Eden Duthie

Abstract

The goal of the Amazon Last Mile Routing Research Challenge is to integrate the real-life experience of Amazon drivers into the solution of optimal route planning and optimization. This paper presents our method that tackles this challenge by hierarchically combining machine learning and conventional Traveling Salesperson Problem (TSP) solvers. Our method reaps the benefits from both worlds. On the one hand, our method encodes driver know-how by learning a sequential probability model from historical routes at the zone level, where each zone contains a few parcel stops. It then uses a single step policy iteration method, known as the Rollout algorithm, to generate plausible zone sequences sampled from the learned probability model. On the other hand, our method utilizes proven methods developed in the rich TSP literature to sequence stops within each zone efficiently. The outcome of such a combination appeared to be promising. Our method obtained an evaluation score of $0.0374$, which is comparable to what the top three teams have achieved on the official Challenge leaderboard. Moreover, our learning-based method is applicable to driving routes that may exhibit distinct sequential patterns beyond the scope of this Challenge. The source code of our method is publicly available at this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2205.04001

PDF

https://arxiv.org/pdf/2205.04001.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot