Paper Reading AI Learner

The Roles and Modes of Human Interactions with Automated Machine Learning Systems

2022-05-09 09:28:43
Thanh Tung Khuat, David Jacob Kedziora, Bogdan Gabrys

Abstract

As automated machine learning (AutoML) systems continue to progress in both sophistication and performance, it becomes important to understand the `how' and `why' of human-computer interaction (HCI) within these frameworks, both current and expected. Such a discussion is necessary for optimal system design, leveraging advanced data-processing capabilities to support decision-making involving humans, but it is also key to identifying the opportunities and risks presented by ever-increasing levels of machine autonomy. Within this context, we focus on the following questions: (i) How does HCI currently look like for state-of-the-art AutoML algorithms, especially during the stages of development, deployment, and maintenance? (ii) Do the expectations of HCI within AutoML frameworks vary for different types of users and stakeholders? (iii) How can HCI be managed so that AutoML solutions acquire human trust and broad acceptance? (iv) As AutoML systems become more autonomous and capable of learning from complex open-ended environments, will the fundamental nature of HCI evolve? To consider these questions, we project existing literature in HCI into the space of AutoML; this connection has, to date, largely been unexplored. In so doing, we review topics including user-interface design, human-bias mitigation, and trust in artificial intelligence (AI). Additionally, to rigorously gauge the future of HCI, we contemplate how AutoML may manifest in effectively open-ended environments. This discussion necessarily reviews projected developmental pathways for AutoML, such as the incorporation of reasoning, although the focus remains on how and why HCI may occur in such a framework rather than on any implementational details. Ultimately, this review serves to identify key research directions aimed at better facilitating the roles and modes of human interactions with both current and future AutoML systems.

Abstract (translated)

URL

https://arxiv.org/abs/2205.04139

PDF

https://arxiv.org/pdf/2205.04139.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot