Paper Reading AI Learner

RepSR: Training Efficient VGG-style Super-Resolution Networks with Structural Re-Parameterization and Batch Normalization

2022-05-11 17:55:49
Xintao Wang, Chao Dong, Ying Shan

Abstract

This paper explores training efficient VGG-style super-resolution (SR) networks with the structural re-parameterization technique. The general pipeline of re-parameterization is to train networks with multi-branch topology first, and then merge them into standard 3x3 convolutions for efficient inference. In this work, we revisit those primary designs and investigate essential components for re-parameterizing SR networks. First of all, we find that batch normalization (BN) is important to bring training non-linearity and improve the final performance. However, BN is typically ignored in SR, as it usually degrades the performance and introduces unpleasant artifacts. We carefully analyze the cause of BN issue and then propose a straightforward yet effective solution. In particular, we first train SR networks with mini-batch statistics as usual, and then switch to using population statistics at the later training period. While we have successfully re-introduced BN into SR, we further design a new re-parameterizable block tailored for SR, namely RepSR. It consists of a clean residual path and two expand-and-squeeze convolution paths with the modified BN. Extensive experiments demonstrate that our simple RepSR is capable of achieving superior performance to previous SR re-parameterization methods among different model sizes. In addition, our RepSR can achieve a better trade-off between performance and actual running time (throughput) than previous SR methods. Codes will be available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2205.05671

PDF

https://arxiv.org/pdf/2205.05671.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot