Paper Reading AI Learner

Semi-Supervised Building Footprint Generation with Feature and Output Consistency Training

2022-05-17 14:55:13
Qingyu Li, Yilei Shi, Xiao Xiang Zhu

Abstract

Accurate and reliable building footprint maps are vital to urban planning and monitoring, and most existing approaches fall back on convolutional neural networks (CNNs) for building footprint generation. However, one limitation of these methods is that they require strong supervisory information from massive annotated samples for network learning. State-of-the-art semi-supervised semantic segmentation networks with consistency training can help to deal with this issue by leveraging a large amount of unlabeled data, which encourages the consistency of model output on data perturbation. Considering that rich information is also encoded in feature maps, we propose to integrate the consistency of both features and outputs in the end-to-end network training of unlabeled samples, enabling to impose additional constraints. Prior semi-supervised semantic segmentation networks have established the cluster assumption, in which the decision boundary should lie in the vicinity of low sample density. In this work, we observe that for building footprint generation, the low-density regions are more apparent at the intermediate feature representations within the encoder than the encoder's input or output. Therefore, we propose an instruction to assign the perturbation to the intermediate feature representations within the encoder, which considers the spatial resolution of input remote sensing imagery and the mean size of individual buildings in the study area. The proposed method is evaluated on three datasets with different resolutions: Planet dataset (3 m/pixel), Massachusetts dataset (1 m/pixel), and Inria dataset (0.3 m/pixel). Experimental results show that the proposed approach can well extract more complete building structures and alleviate omission errors.

Abstract (translated)

URL

https://arxiv.org/abs/2205.08416

PDF

https://arxiv.org/pdf/2205.08416.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot