Paper Reading AI Learner

Learning Selective Sensor Fusion for States Estimation

2022-05-18 10:42:16
Changhao Chen, Stefano Rosa, Chris Xiaoxuan Lu, Bing Wang, Niki Trigoni, Andrew Markham

Abstract

Autonomous vehicles and mobile robotic systems are typically equipped with multiple sensors to provide redundancy. By integrating the observations from different sensors, these mobile agents are able to perceive the environment and estimate system states, e.g. locations and orientations. Although deep learning approaches for multimodal odometry estimation and localization have gained traction, they rarely focus on the issue of robust sensor fusion - a necessary consideration to deal with noisy or incomplete sensor observations in the real world. Moreover, current deep odometry models suffer from a lack of interpretability. To this extent, we propose SelectFusion, an end-to-end selective sensor fusion module which can be applied to useful pairs of sensor modalities such as monocular images and inertial measurements, depth images and LIDAR point clouds. Our model is a uniform framework that is not restricted to specific modality or task. During prediction, the network is able to assess the reliability of the latent features from different sensor modalities and estimate trajectory both at scale and global pose. In particular, we propose two fusion modules - a deterministic soft fusion and a stochastic hard fusion, and offer a comprehensive study of the new strategies compared to trivial direct fusion. We extensively evaluate all fusion strategies in both public datasets and on progressively degraded datasets that present synthetic occlusions, noisy and missing data and time misalignment between sensors, and we investigate the effectiveness of the different fusion strategies in attending the most reliable features, which in itself, provides insights into the operation of the various models.

Abstract (translated)

URL

https://arxiv.org/abs/1912.13077

PDF

https://arxiv.org/pdf/1912.13077.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot