Paper Reading AI Learner

DISPATCH: Design Space Exploration of Cyber-Physical Systems

2020-09-25 00:06:05
Prerit Terway, Kenza Hamidouche, Niraj K. Jha

Abstract

Design of cyber-physical systems (CPSs) is a challenging task that involves searching over a large search space of various CPS configurations and possible values of components composing the system. Hence, there is a need for sample-efficient CPS design space exploration to select the system architecture and component values that meet the target system requirements. We address this challenge by formulating CPS design as a multi-objective optimization problem and propose DISPATCH, a two-step methodology for sample-efficient search over the design space. First, we use a genetic algorithm to search over discrete choices of system component values for architecture search and component selection or only component selection and terminate the algorithm even before meeting the system requirements, thus yielding a coarse design. In the second step, we use an inverse design to search over a continuous space to fine-tune the component values and meet the diverse set of system requirements. We use a neural network as a surrogate function for the inverse design of the system. The neural network, converted into a mixed-integer linear program, is used for active learning to sample component values efficiently in a continuous search space. We illustrate the efficacy of DISPATCH on electrical circuit benchmarks: two-stage and three-stage transimpedence amplifiers. Simulation results show that the proposed methodology improves sample efficiency by 5-14x compared to a prior synthesis method that relies on reinforcement learning. It also synthesizes circuits with the best performance (highest bandwidth/lowest area) compared to designs synthesized using reinforcement learning, Bayesian optimization, or humans.

Abstract (translated)

URL

https://arxiv.org/abs/2009.10214

PDF

https://arxiv.org/pdf/2009.10214.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot