Paper Reading AI Learner

Scaling Up Deep Neural Network Optimization for Edge Inference

2020-09-17 07:41:44
Bingqian Lu, Jianyi Yang, Shaolei Ren

Abstract

Deep neural networks (DNNs) have been increasingly deployed on and integrated with edge devices, such as mobile phones, drones, robots and wearables. To run DNN inference directly on edge devices (a.k.a. edge inference) with a satisfactory performance, optimizing the DNN design (e.g., network architecture and quantization policy) is crucial. While state-of-the-art DNN designs have leveraged performance predictors to speed up the optimization process, they are device-specific (i.e., each predictor for only one target device) and hence cannot scale well in the presence of extremely diverse edge devices. Moreover, even with performance predictors, the optimizer (e.g., search-based optimization) can still be time-consuming when optimizing DNNs for many different devices. In this work, we propose two approaches to scaling up DNN optimization. In the first approach, we reuse the performance predictors built on a proxy device, and leverage the performance monotonicity to scale up the DNN optimization without re-building performance predictors for each different device. In the second approach, we build scalable performance predictors that can estimate the resulting performance (e.g., inference accuracy/latency/energy) given a DNN-device pair, and use a neural network-based automated optimizer that takes both device features and optimization parameters as input and then directly outputs the optimal DNN design without going through a lengthy optimization process for each individual device.

Abstract (translated)

URL

https://arxiv.org/abs/2009.00278

PDF

https://arxiv.org/pdf/2009.00278.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot