Paper Reading AI Learner

Reinforcement Learning with Brain-Inspired Modulation can Improve Adaptation to Environmental Changes

2022-05-19 17:39:40
Eric Chalmers, Artur Luczak

Abstract

Developments in reinforcement learning (RL) have allowed algorithms to achieve impressive performance in highly complex, but largely static problems. In contrast, biological learning seems to value efficiency of adaptation to a constantly-changing world. Here we build on a recently-proposed neuronal learning rule that assumes each neuron can optimize its energy balance by predicting its own future activity. That assumption leads to a neuronal learning rule that uses presynaptic input to modulate prediction error. We argue that an analogous RL rule would use action probability to modulate reward prediction error. This modulation makes the agent more sensitive to negative experiences, and more careful in forming preferences. We embed the proposed rule in both tabular and deep-Q-network RL algorithms, and find that it outperforms conventional algorithms in simple, but highly-dynamic tasks. We suggest that the new rule encapsulates a core principle of biological intelligence; an important component for allowing algorithms to adapt to change in a human-like way.

Abstract (translated)

URL

https://arxiv.org/abs/2205.09729

PDF

https://arxiv.org/pdf/2205.09729.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot