Paper Reading AI Learner

Self-Paced Multi-Agent Reinforcement Learning

2022-05-20 08:16:30
Wenshuai Zhao, Joni Pajarinen

Abstract

Curriculum reinforcement learning (CRL) aims to speed up learning of a task by changing gradually the difficulty of the task from easy to hard through control of factors such as initial state or environment dynamics. While automating CRL is well studied in the single-agent setting, in multi-agent reinforcement learning (MARL) an open question is whether control of the number of agents with other factors in a principled manner is beneficial, prior approaches typically relying on hand-crafted heuristics. In addition, how the tasks evolve as the number of agents changes remains understudied, which is critical for scaling to more challenging tasks. We introduce self-paced MARL (SPMARL) that enables optimizing the number of agents with other environment factors in a principled way, and, show that usual assumptions such as that fewer agents make the task always easier are not generally valid. The curriculum induced by SPMARL reveals the evolution of tasks w.r.t. number of agents and experiments show that SPMARL improves the performance when the number of agents sufficiently influences task difficulty.

Abstract (translated)

URL

https://arxiv.org/abs/2205.10016

PDF

https://arxiv.org/pdf/2205.10016.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot