Paper Reading AI Learner

ClusterEA: Scalable Entity Alignment with Stochastic Training and Normalized Mini-batch Similarities

2022-05-20 17:29:50
Yunjun Gao, Xiaoze Liu, Junyang Wu, Tianyi Li, Pengfei Wang, Lu Chen

Abstract

Entity alignment (EA) aims at finding equivalent entities in different knowledge graphs (KGs). Embedding-based approaches have dominated the EA task in recent years. Those methods face problems that come from the geometric properties of embedding vectors, including hubness and isolation. To solve these geometric problems, many normalization approaches have been adopted to EA. However, the increasing scale of KGs renders it is hard for EA models to adopt the normalization processes, thus limiting their usage in real-world applications. To tackle this challenge, we present ClusterEA, a general framework that is capable of scaling up EA models and enhancing their results by leveraging normalization methods on mini-batches with a high entity equivalent rate. ClusterEA contains three components to align entities between large-scale KGs, including stochastic training, ClusterSampler, and SparseFusion. It first trains a large-scale Siamese GNN for EA in a stochastic fashion to produce entity embeddings. Based on the embeddings, a novel ClusterSampler strategy is proposed for sampling highly overlapped mini-batches. Finally, ClusterEA incorporates SparseFusion, which normalizes local and global similarity and then fuses all similarity matrices to obtain the final similarity matrix. Extensive experiments with real-life datasets on EA benchmarks offer insight into the proposed framework, and suggest that it is capable of outperforming the state-of-the-art scalable EA framework by up to 8 times in terms of Hits@1.

Abstract (translated)

URL

https://arxiv.org/abs/2205.10312

PDF

https://arxiv.org/pdf/2205.10312.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot