Paper Reading AI Learner

Classification of Quasars, Galaxies, and Stars in the Mapping of the Universe Multi-modal Deep Learning

2022-05-22 05:17:31
Sabeesh Ethiraj, Bharath Kumar Bolla

Abstract

In this paper, the fourth version the Sloan Digital Sky Survey (SDSS-4), Data Release 16 dataset was used to classify the SDSS dataset into galaxies, stars, and quasars using machine learning and deep learning architectures. We efficiently utilize both image and metadata in tabular format to build a novel multi-modal architecture and achieve state-of-the-art results. In addition, our experiments on transfer learning using Imagenet weights on five different architectures (Resnet-50, DenseNet-121 VGG-16, Xception, and EfficientNet) reveal that freezing all layers and adding a final trainable layer may not be an optimal solution for transfer learning. It is hypothesized that higher the number of trainable layers, higher will be the training time and accuracy of predictions. It is also hypothesized that any subsequent increase in the number of training layers towards the base layers will not increase in accuracy as the pre trained lower layers only help in low level feature extraction which would be quite similar in all the datasets. Hence the ideal level of trainable layers needs to be identified for each model in respect to the number of parameters. For the tabular data, we compared classical machine learning algorithms (Logistic Regression, Random Forest, Decision Trees, Adaboost, LightGBM etc.,) with artificial neural networks. Our works shed new light on transfer learning and multi-modal deep learning architectures. The multi-modal architecture not only resulted in higher metrics (accuracy, precision, recall, F1 score) than models using only image data or tabular data. Furthermore, multi-modal architecture achieved the best metrics in lesser training epochs and improved the metrics on all classes.

Abstract (translated)

URL

https://arxiv.org/abs/2205.10745

PDF

https://arxiv.org/pdf/2205.10745.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot