Paper Reading AI Learner

Deep Learning for Omnidirectional Vision: A Survey and New Perspectives

2022-05-21 00:19:56
Hao Ai, Zidong Cao, Jinjing Zhu, Haotian Bai, Yucheng Chen, Ling Wang

Abstract

Omnidirectional image (ODI) data is captured with a 360x180 field-of-view, which is much wider than the pinhole cameras and contains richer spatial information than the conventional planar images. Accordingly, omnidirectional vision has attracted booming attention due to its more advantageous performance in numerous applications, such as autonomous driving and virtual reality. In recent years, the availability of customer-level 360 cameras has made omnidirectional vision more popular, and the advance of deep learning (DL) has significantly sparked its research and applications. This paper presents a systematic and comprehensive review and analysis of the recent progress in DL methods for omnidirectional vision. Our work covers four main contents: (i) An introduction to the principle of omnidirectional imaging, the convolution methods on the ODI, and datasets to highlight the differences and difficulties compared with the 2D planar image data; (ii) A structural and hierarchical taxonomy of the DL methods for omnidirectional vision; (iii) A summarization of the latest novel learning strategies and applications; (iv) An insightful discussion of the challenges and open problems by highlighting the potential research directions to trigger more research in the community.

Abstract (translated)

URL

https://arxiv.org/abs/2205.10468

PDF

https://arxiv.org/pdf/2205.10468.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot