Paper Reading AI Learner

Thalamus: a brain-inspired algorithm for biologically-plausible continual learning and disentangled representations

2022-05-24 01:29:21
Ali Hummos

Abstract

Animals thrive in a constantly changing environment and leverage the temporal structure to learn well-factorized causal representations. In contrast, traditional neural networks suffer from forgetting in changing environments and many methods have been proposed to limit forgetting with different trade-offs. Inspired by the brain thalamocortical circuit, we introduce a simple algorithm that uses optimization at inference time to generate internal representations of temporal context and to infer current context dynamically, allowing the agent to parse the stream of temporal experience into discrete events and organize learning about them. We show that a network trained on a series of tasks using traditional weight updates can infer tasks dynamically using gradient descent steps in the latent task embedding space (latent updates). We then alternate between the weight updates and the latent updates to arrive at Thalamus, a task-agnostic algorithm capable of discovering disentangled representations in a stream of unlabeled tasks using simple gradient descent. On a continual learning benchmark, it achieves competitive end average accuracy and demonstrates knowledge transfer. After learning a subset of tasks it can generalize to unseen tasks as they become reachable within the well-factorized latent space, through one-shot latent updates. The algorithm meets many of the desiderata of an ideal continually learning agent in open-ended environments, and its simplicity suggests fundamental computations in circuits with abundant feedback control loops such as the thalamocortical circuits in the brain.

Abstract (translated)

URL

https://arxiv.org/abs/2205.11713

PDF

https://arxiv.org/pdf/2205.11713.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot