Paper Reading AI Learner

Hierarchical Vectorization for Portrait Images

2022-05-24 07:58:41
Qian Fu, Linlin Liu, Fei Hou, Ying He

Abstract

Aiming at developing intuitive and easy-to-use portrait editing tools, we propose a novel vectorization method that can automatically convert raster images into a 3-tier hierarchical representation. The base layer consists of a set of sparse diffusion curves (DC) which characterize salient geometric features and low-frequency colors and provide means for semantic color transfer and facial expression editing. The middle level encodes specular highlights and shadows to large and editable Poisson regions (PR) and allows the user to directly adjust illumination via tuning the strength and/or changing shape of PR. The top level contains two types of pixel-sized PRs for high-frequency residuals and fine details such as pimples and pigmentation. We also train a deep generative model that can produce high-frequency residuals automatically. Thanks to the meaningful organization of vector primitives, editing portraits becomes easy and intuitive. In particular, our method supports color transfer, facial expression editing, highlight and shadow editing and automatic retouching. Thanks to the linearity of the Laplace operator, we introduce alpha blending, linear dodge and linear burn to vector editing and show that they are effective in editing highlights and shadows. To quantitatively evaluate the results, we extend the commonly used FLIP metric (which measures differences between two images) by considering illumination. The new metric, called illumination-sensitive FLIP or IS-FLIP, can effectively capture the salient changes in color transfer results, and is more consistent with human perception than FLIP and other quality measures on portrait images. We evaluate our method on the FFHQR dataset and show that our method is effective for common portrait editing tasks, such as retouching, light editing, color transfer and expression editing. We will make the code and trained models publicly available.

Abstract (translated)

URL

https://arxiv.org/abs/2205.11880

PDF

https://arxiv.org/pdf/2205.11880.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot