Paper Reading AI Learner

Gacs-Korner Common Information Variational Autoencoder

2022-05-24 17:47:26
Michael Kleinman, Alessandro Achille, Stefano Soatto, Jonathan Kao

Abstract

We propose a notion of common information that allows one to quantify and separate the information that is shared between two random variables from the information that is unique to each. Our notion of common information is a variational relaxation of the Gács-Körner common information, which we recover as a special case, but is more amenable to optimization and can be approximated empirically using samples from the underlying distribution. We then provide a method to partition and quantify the common and unique information using a simple modification of a traditional variational auto-encoder. Empirically, we demonstrate that our formulation allows us to learn semantically meaningful common and unique factors of variation even on high-dimensional data such as images and videos. Moreover, on datasets where ground-truth latent factors are known, we show that we can accurately quantify the common information between the random variables. Additionally, we show that the auto-encoder that we learn recovers semantically meaningful disentangled factors of variation, even though we do not explicitly optimize for it.

Abstract (translated)

URL

https://arxiv.org/abs/2205.12239

PDF

https://arxiv.org/pdf/2205.12239.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot