Paper Reading AI Learner

The Neuro-Symbolic Brain

2022-05-13 00:39:19
Robert Lizée

Abstract

Neural networks promote a distributed representation with no clear place for symbols. Despite this, we propose that symbols are manufactured simply by training a sparse random noise as a self-sustaining attractor in a feedback spiking neural network. This way, we can generate many of what we shall call prime attractors, and the networks that support them are like registers holding a symbolic value, and we call them registers. Like symbols, prime attractors are atomic and devoid of any internal structure. Moreover, the winner-take-all mechanism naturally implemented by spiking neurons enables registers to recover a prime attractor within a noisy signal. Using this faculty, when considering two connected registers, an input one and an output one, it is possible to bind in one shot using a Hebbian rule the attractor active on the output to the attractor active on the input. Thus, whenever an attractor is active on the input, it induces its bound attractor on the output; even though the signal gets blurrier with more bindings, the winner-take-all filtering faculty can recover the bound prime attractor. However, the capacity is still limited. It is also possible to unbind in one shot, restoring the capacity taken by that binding. This mechanism serves as a basis for working memory, turning prime attractors into variables. Also, we use a random second-order network to amalgamate the prime attractors held by two registers to bind the prime attractor held by a third register to them in one shot, de facto implementing a hash table. Furthermore, we introduce the register switch box composed of registers to move the content of one register to another. Then, we use spiking neurons to build a toy symbolic computer based on the above. The technics used suggest ways to design extrapolating, reusable, sample-efficient deep learning networks at the cost of structural priors.

Abstract (translated)

URL

https://arxiv.org/abs/2205.13440

PDF

https://arxiv.org/pdf/2205.13440.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot