Paper Reading AI Learner

ProxyMix: Proxy-based Mixup Training with Label Refinery for Source-Free Domain Adaptation

2022-05-29 03:45:00
Yuhe Ding, Lijun Sheng, Jian Liang, Aihua Zheng, Ran He

Abstract

Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain. Owing to privacy concerns and heavy data transmission, source-free UDA, exploiting the pre-trained source models instead of the raw source data for target learning, has been gaining popularity in recent years. Some works attempt to recover unseen source domains with generative models, however introducing additional network parameters. Other works propose to fine-tune the source model by pseudo labels, while noisy pseudo labels may misguide the decision boundary, leading to unsatisfied results. To tackle these issues, we propose an effective method named Proxy-based Mixup training with label refinery (ProxyMix). First of all, to avoid additional parameters and explore the information in the source model, ProxyMix defines the weights of the classifier as the class prototypes and then constructs a class-balanced proxy source domain by the nearest neighbors of the prototypes to bridge the unseen source domain and the target domain. To improve the reliability of pseudo labels, we further propose the frequency-weighted aggregation strategy to generate soft pseudo labels for unlabeled target data. The proposed strategy exploits the internal structure of target features, pulls target features to their semantic neighbors, and increases the weights of low-frequency classes samples during gradient updating. With the proxy domain and the reliable pseudo labels, we employ two kinds of mixup regularization, i.e., inter- and intra-domain mixup, in our framework, to align the proxy and the target domain, enforcing the consistency of predictions, thereby further mitigating the negative impacts of noisy labels. Experiments on three 2D image and one 3D point cloud object recognition benchmarks demonstrate that ProxyMix yields state-of-the-art performance for source-free UDA tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2205.14566

PDF

https://arxiv.org/pdf/2205.14566.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot