Paper Reading AI Learner

A Transistor Operations Model for Deep Learning Energy Consumption Scaling

2022-05-30 12:42:33
Chen Li, Antonios Tsourdos, Weisi Guo

Abstract

Deep Learning (DL) has transformed the automation of a wide range of industries and finds increasing ubiquity in society. The increasing complexity of DL models and its widespread adoption has led to the energy consumption doubling every 3-4 months. Currently, the relationship between DL model configuration and energy consumption is not well established. Current FLOPs and MACs based methods only consider the linear operations. In this paper, we develop a bottom-level Transistor Operations (TOs) method to expose the role of activation functions and neural network structure in energy consumption scaling with DL model configuration. TOs allows us uncovers the role played by non-linear operations (e.g. division/root operations performed by activation functions and batch normalisation). As such, our proposed TOs model provides developers with a hardware-agnostic index for how energy consumption scales with model settings. To validate our work, we analyse the TOs energy scaling of a feed-forward DNN model set and achieve a 98.2% - 99.97% precision in estimating its energy consumption. We believe this work can be extended to any DL model.

Abstract (translated)

URL

https://arxiv.org/abs/2205.15062

PDF

https://arxiv.org/pdf/2205.15062.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot