Paper Reading AI Learner

Variable importance without impossible data

2022-05-31 12:36:18
Masayoshi Mase, Art B. Owen, Benjamin B. Seiler

Abstract

The most popular methods for measuring importance of the variables in a black box prediction algorithm make use of synthetic inputs that combine predictor variables from multiple subjects. These inputs can be unlikely, physically impossible, or even logically impossible. As a result, the predictions for such cases can be based on data very unlike any the black box was trained on. We think that users cannot trust an explanation of the decision of a prediction algorithm when the explanation uses such values. Instead we advocate a method called Cohort Shapley that is grounded in economic game theory and unlike most other game theoretic methods, it uses only actually observed data to quantify variable importance. Cohort Shapley works by narrowing the cohort of subjects judged to be similar to a target subject on one or more features. A feature is important if using it to narrow the cohort makes a large difference to the cohort mean. We illustrate it on an algorithmic fairness problem where it is essential to attribute importance to protected variables that the model was not trained on. For every subject and every predictor variable, we can compute the importance of that predictor to the subject's predicted response or to their actual response. These values can be aggregated, for example over all Black subjects, and we propose a Bayesian bootstrap to quantify uncertainty in both individual and aggregate Shapley values.

Abstract (translated)

URL

https://arxiv.org/abs/2205.15750

PDF

https://arxiv.org/pdf/2205.15750.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot