Paper Reading AI Learner

Predecessor Features

2022-06-01 08:05:59
Duncan Bailey, Marcelo Mattar

Abstract

Any reinforcement learning system must be able to identify which past events contributed to observed outcomes, a problem known as credit assignment. A common solution to this problem is to use an eligibility trace to assign credit to recency-weighted set of experienced events. However, in many realistic tasks, the set of recently experienced events are only one of the many possible action events that could have preceded the current outcome. This suggests that reinforcement learning can be made more efficient by allowing credit assignment to any viable preceding state, rather than only those most recently experienced. Accordingly, we propose "Predecessor Features", an algorithm that achieves this richer form of credit assignment. By maintaining a representation that approximates the expected sum of past occupancies, our algorithm allows temporal difference (TD) errors to be propagated accurately to a larger number of predecessor states than conventional methods, greatly improving learning speed. Our algorithm can also be naturally extended from tabular state representation to feature representations allowing for increased performance on a wide range of environments. We demonstrate several use cases for Predecessor Features and contrast its performance with other similar approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2206.00303

PDF

https://arxiv.org/pdf/2206.00303.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot