Paper Reading AI Learner

Putting AI Ethics into Practice: The Hourglass Model of Organizational AI Governance

2022-06-01 08:55:27
Matti Mäntymäki, Matti Minkkinen, Teemu Birkstedt, Mika Viljanen
     

Abstract

The organizational use of artificial intelligence (AI) has rapidly spread across various sectors. Alongside the awareness of the benefits brought by AI, there is a growing consensus on the necessity of tackling the risks and potential harms, such as bias and discrimination, brought about by advanced AI technologies. A multitude of AI ethics principles have been proposed to tackle these risks, but the outlines of organizational processes and practices for ensuring socially responsible AI development are in a nascent state. To address the paucity of comprehensive governance models, we present an AI governance framework, the hourglass model of organizational AI governance, which targets organizations that develop and use AI systems. The framework is designed to help organizations deploying AI systems translate ethical AI principles into practice and align their AI systems and processes with the forthcoming European AI Act. The hourglass framework includes governance requirements at the environmental, organizational, and AI system levels. At the AI system level, we connect governance requirements to AI system life cycles to ensure governance throughout the system's life span. The governance model highlights the systemic nature of AI governance and opens new research avenues into its practical implementation, the mechanisms that connect different AI governance layers, and the dynamics between the AI governance actors. The model also offers a starting point for organizational decision-makers to consider the governance components needed to ensure social acceptability, mitigate risks, and realize the potential of AI.

Abstract (translated)

URL

https://arxiv.org/abs/2206.00335

PDF

https://arxiv.org/pdf/2206.00335.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot