Paper Reading AI Learner

DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep Neural Networks

2022-06-01 09:51:38
Dong Huang, Ding-Hua Chen, Xiangji Chen, Chang-Dong Wang, Jian-Huang Lai

Abstract

Deep clustering has recently emerged as a promising technique for complex image clustering. Despite the significant progress, previous deep clustering works mostly tend to construct the final clustering by utilizing a single layer of representation, e.g., by performing $K$-means on the last fully-connected layer or by associating some clustering loss to a specific layer. However, few of them have considered the possibilities and potential benefits of jointly leveraging multi-layer representations for enhancing the deep clustering performance. In light of this, this paper presents a Deep Clustering via Ensembles (DeepCluE) approach, which bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks. Particularly, we utilize a weight-sharing convolutional neural network as the backbone, which is trained with both the instance-level contrastive learning (via an instance projector) and the cluster-level contrastive learning (via a cluster projector) in an unsupervised manner. Thereafter, multiple layers of feature representations are extracted from the trained network, upon which a set of diversified base clusterings can be generated via a highly efficient clusterer. Then, the reliability of the clusters in multiple base clusterings is automatically estimated by exploiting an entropy-based criterion, based on which the multiple base clusterings are further formulated into a weighted-cluster bipartite graph. By partitioning this bipartite graph via transfer cut, the final image clustering result can therefore be obtained. Experimental results on six image datasets confirm the advantages of our DeepCluE approach over the state-of-the-art deep clustering approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2206.00359

PDF

https://arxiv.org/pdf/2206.00359.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot