Paper Reading AI Learner

Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination

2022-06-03 12:32:47
Yizhen Zheng, Shirui Pan, Vincent Cs Lee, Yu Zheng, Philip S. Yu

Abstract

Graph contrastive learning (GCL) alleviates the heavy reliance on label information for graph representation learning (GRL) via self-supervised learning schemes. The core idea is to learn by maximising mutual information for similar instances, which requires similarity computation between two node instances. However, this operation can be computationally expensive. For example, the time complexity of two commonly adopted contrastive loss functions (i.e., InfoNCE and JSD estimator) for a node is $O(ND)$ and $O(D)$, respectively, where $N$ is the number of nodes, and $D$ is the embedding dimension. Additionally, GCL normally requires a large number of training epochs to be well-trained on large-scale datasets. Inspired by an observation of a technical defect (i.e., inappropriate usage of Sigmoid function) commonly used in two representative GCL works, DGI and MVGRL, we revisit GCL and introduce a new learning paradigm for self-supervised GRL, namely, Group Discrimination (GD), and propose a novel GD-based method called Graph Group Discrimination (GGD). Instead of similarity computation, GGD directly discriminates two groups of summarised node instances with a simple binary cross-entropy loss. As such, GGD only requires $O(1)$ for loss computation of a node. In addition, GGD requires much fewer training epochs to obtain competitive performance compared with GCL methods on large-scale datasets. These two advantages endow GGD with the very efficient property. Extensive experiments show that GGD outperforms state-of-the-art self-supervised methods on 8 datasets. In particular, GGD can be trained in 0.18 seconds (6.44 seconds including data preprocessing) on ogbn-arxiv, which is orders of magnitude (10,000+ faster than GCL baselines} while consuming much less memory. Trained with 9 hours on ogbn-papers100M with billion edges, GGD outperforms its GCL counterparts in both accuracy and efficiency.

Abstract (translated)

URL

https://arxiv.org/abs/2206.01535

PDF

https://arxiv.org/pdf/2206.01535.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot