Paper Reading AI Learner

What Are Expected Queries in End-to-End Object Detection?

2022-06-02 18:15:44
Shilong Zhang, Xinjiang Wang, Jiaqi Wang, Jiangmiao Pang, Kai Chen

Abstract

End-to-end object detection is rapidly progressed after the emergence of DETR. DETRs use a set of sparse queries that replace the dense candidate boxes in most traditional detectors. In comparison, the sparse queries cannot guarantee a high recall as dense priors. However, making queries dense is not trivial in current frameworks. It not only suffers from heavy computational cost but also difficult optimization. As both sparse and dense queries are imperfect, then \emph{what are expected queries in end-to-end object detection}? This paper shows that the expected queries should be Dense Distinct Queries (DDQ). Concretely, we introduce dense priors back to the framework to generate dense queries. A duplicate query removal pre-process is applied to these queries so that they are distinguishable from each other. The dense distinct queries are then iteratively processed to obtain final sparse outputs. We show that DDQ is stronger, more robust, and converges faster. It obtains 44.5 AP on the MS COCO detection dataset with only 12 epochs. DDQ is also robust as it outperforms previous methods on both object detection and instance segmentation tasks on various datasets. DDQ blends advantages from traditional dense priors and recent end-to-end detectors. We hope it can serve as a new baseline and inspires researchers to revisit the complementarity between traditional methods and end-to-end detectors. The source code is publicly available at \url{this https URL}.

Abstract (translated)

URL

https://arxiv.org/abs/2206.01232

PDF

https://arxiv.org/pdf/2206.01232.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot