Paper Reading AI Learner

Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

2022-06-02 20:46:05
Emre Can Kaya, Ioan Tabus

Abstract

We propose a new paradigm for encoding the geometry of point cloud sequences, where the convolutional neural network (CNN) which estimates the encoding distributions is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures, we perform training as part of the encoding process, and the CNN parameters are transmitted as part of the bitstream. The newly proposed encoding scheme operates on the octree representation for each point cloud, encoding consecutively each octree resolution layer. At every octree resolution layer, the voxel grid is traversed section-by-section (each section being perpendicular to a selected coordinate axis) and in each section the occupancies of groups of two-by-two voxels are encoded at once, in a single arithmetic coding operation. A context for the conditional encoding distribution is defined for each two-by-two group of voxels, based on the information available about the occupancy of neighbor voxels in the current and lower resolution layers of the octree. The CNN estimates the probability distributions of occupancy patterns of all voxel groups from one section in four phases. In each new phase the contexts are updated with the occupancies encoded in the previous phase, and each phase estimates the probabilities in parallel, providing a reasonable trade-off between the parallelism of processing and the informativeness of the contexts. The CNN training time is comparable to the time spent in the remaining encoding steps, leading to competitive overall encoding times. Bitrates and encoding-decoding times compare favorably with those of recently published compression schemes.

Abstract (translated)

URL

https://arxiv.org/abs/2206.01297

PDF

https://arxiv.org/pdf/2206.01297.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot