Paper Reading AI Learner

Fooling Explanations in Text Classifiers

2022-06-07 10:58:08
Adam Ivankay, Ivan Girardi, Chiara Marchiori, Pascal Frossard

Abstract

State-of-the-art text classification models are becoming increasingly reliant on deep neural networks (DNNs). Due to their black-box nature, faithful and robust explanation methods need to accompany classifiers for deployment in real-life scenarios. However, it has been shown in vision applications that explanation methods are susceptible to local, imperceptible perturbations that can significantly alter the explanations without changing the predicted classes. We show here that the existence of such perturbations extends to text classifiers as well. Specifically, we introduceTextExplanationFooler (TEF), a novel explanation attack algorithm that alters text input samples imperceptibly so that the outcome of widely-used explanation methods changes considerably while leaving classifier predictions unchanged. We evaluate the performance of the attribution robustness estimation performance in TEF on five sequence classification datasets, utilizing three DNN architectures and three transformer architectures for each dataset. TEF can significantly decrease the correlation between unchanged and perturbed input attributions, which shows that all models and explanation methods are susceptible to TEF perturbations. Moreover, we evaluate how the perturbations transfer to other model architectures and attribution methods, and show that TEF perturbations are also effective in scenarios where the target model and explanation method are unknown. Finally, we introduce a semi-universal attack that is able to compute fast, computationally light perturbations with no knowledge of the attacked classifier nor explanation method. Overall, our work shows that explanations in text classifiers are very fragile and users need to carefully address their robustness before relying on them in critical applications.

Abstract (translated)

URL

https://arxiv.org/abs/2206.03178

PDF

https://arxiv.org/pdf/2206.03178.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot