Paper Reading AI Learner

Wavelet Regularization Benefits Adversarial Training

2022-06-08 08:00:30
Jun Yan, Huilin Yin, Xiaoyang Deng, Ziming Zhao, Wancheng Ge, Hao Zhang, Gerhard Rigoll

Abstract

Adversarial training methods are state-of-the-art (SOTA) empirical defense methods against adversarial examples. Many regularization methods have been proven to be effective with the combination of adversarial training. Nevertheless, such regularization methods are implemented in the time domain. Since adversarial vulnerability can be regarded as a high-frequency phenomenon, it is essential to regulate the adversarially-trained neural network models in the frequency domain. Faced with these challenges, we make a theoretical analysis on the regularization property of wavelets which can enhance adversarial training. We propose a wavelet regularization method based on the Haar wavelet decomposition which is named Wavelet Average Pooling. This wavelet regularization module is integrated into the wide residual neural network so that a new WideWaveletResNet model is formed. On the datasets of CIFAR-10 and CIFAR-100, our proposed Adversarial Wavelet Training method realizes considerable robustness under different types of attacks. It verifies the assumption that our wavelet regularization method can enhance adversarial robustness especially in the deep wide neural networks. The visualization experiments of the Frequency Principle (F-Principle) and interpretability are implemented to show the effectiveness of our method. A detailed comparison based on different wavelet base functions is presented. The code is available at the repository: \url{this https URL}.

Abstract (translated)

URL

https://arxiv.org/abs/2206.03727

PDF

https://arxiv.org/pdf/2206.03727.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot