Paper Reading AI Learner

Efficient Per-Shot Convex Hull Prediction By Recurrent Learning

2022-06-10 05:11:02
Somdyuti Paul, Andrey Norkin, Alan C. Bovik

Abstract

Adaptive video streaming relies on the construction of efficient bitrate ladders to deliver the best possible visual quality to viewers under bandwidth constraints. The traditional method of content dependent bitrate ladder selection requires a video shot to be pre-encoded with multiple encoding parameters to find the optimal operating points given by the convex hull of the resulting rate-quality curves. However, this pre-encoding step is equivalent to an exhaustive search process over the space of possible encoding parameters, which causes significant overhead in terms of both computation and time expenditure. To reduce this overhead, we propose a deep learning based method of content aware convex hull prediction. We employ a recurrent convolutional network (RCN) to implicitly analyze the spatiotemporal complexity of video shots in order to predict their convex hulls. A two-step transfer learning scheme is adopted to train our proposed RCN-Hull model, which ensures sufficient content diversity to analyze scene complexity, while also making it possible capture the scene statistics of pristine source videos. Our experimental results reveal that our proposed model yields better approximations of the optimal convex hulls, and offers competitive time savings as compared to existing approaches. On average, the pre-encoding time was reduced by 58.0% by our method, while the average Bjontegaard delta bitrate (BD-rate) of the predicted convex hulls against ground truth was 0.08%, while the mean absolute deviation of the BD-rate distribution was 0.44%

Abstract (translated)

URL

https://arxiv.org/abs/2206.04877

PDF

https://arxiv.org/pdf/2206.04877.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot