Paper Reading AI Learner

DRAformer: Differentially Reconstructed Attention Transformer for Time-Series Forecasting

2022-06-11 10:34:29
Benhan Li, Shengdong Du, Tianrui Li, Jie Hu, Zhen Jia

Abstract

Time-series forecasting plays an important role in many real-world scenarios, such as equipment life cycle forecasting, weather forecasting, and traffic flow forecasting. It can be observed from recent research that a variety of transformer-based models have shown remarkable results in time-series forecasting. However, there are still some issues that limit the ability of transformer-based models on time-series forecasting tasks: (i) learning directly on raw data is susceptible to noise due to its complex and unstable feature representation; (ii) the self-attention mechanisms pay insufficient attention to changing features and temporal dependencies. In order to solve these two problems, we propose a transformer-based differentially reconstructed attention model DRAformer. Specifically, DRAformer has the following innovations: (i) learning against differenced sequences, which preserves clear and stable sequence features by differencing and highlights the changing properties of sequences; (ii) the reconstructed attention: integrated distance attention exhibits sequential distance through a learnable Gaussian kernel, distributed difference attention calculates distribution difference by mapping the difference sequence to the adaptive feature space, and the combination of the two effectively focuses on the sequences with prominent associations; (iii) the reconstructed decoder input, which extracts sequence features by integrating variation information and temporal correlations, thereby obtaining a more comprehensive sequence representation. Extensive experiments on four large-scale datasets demonstrate that DRAformer outperforms state-of-the-art baselines.

Abstract (translated)

URL

https://arxiv.org/abs/2206.05495

PDF

https://arxiv.org/pdf/2206.05495.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot