Paper Reading AI Learner

Crowd Localization from Gaussian Mixture Scoped Knowledge and Scoped Teacher

2022-06-12 11:07:15
Juncheng Wang, Junyu Gao, Yuan Yuan, Qi Wang

Abstract

Crowd localization is to predict each instance head position in crowd scenarios. Since the distance of instances being to the camera are variant, there exists tremendous gaps among scales of instances within an image, which is called the intrinsic scale shift. The core reason of intrinsic scale shift being one of the most essential issues in crowd localization is that it is ubiquitous in crowd scenes and makes scale distribution chaotic. To this end, the paper concentrates on access to tackle the chaos of the scale distribution incurred by intrinsic scale shift. We propose Gaussian Mixture Scope (GMS) to regularize the chaotic scale distribution. Concretely, the GMS utilizes a Gaussian mixture distribution to adapt to scale distribution and decouples the mixture model into sub-normal distributions to regularize the chaos within the sub-distributions. Then, an alignment is introduced to regularize the chaos among sub-distributions. However, despite that GMS is effective in regularizing the data distribution, it amounts to dislodging the hard samples in training set, which incurs overfitting. We assert that it is blamed on the block of transferring the latent knowledge exploited by GMS from data to model. Therefore, a Scoped Teacher playing a role of bridge in knowledge transform is proposed. What' s more, the consistency regularization is also introduced to implement knowledge transform. To that effect, the further constraints are deployed on Scoped Teacher to derive feature consistence between teacher and student end. With proposed GMS and Scoped Teacher implemented on five mainstream datasets of crowd localization, the extensive experiments demonstrate the superiority of our work. Moreover, comparing with existing crowd locators, our work achieves state-of-the-art via F1-meansure comprehensively on five datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2206.05717

PDF

https://arxiv.org/pdf/2206.05717.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot