Paper Reading AI Learner

Revisiting Whole-Slide Image Pyramids for Cancer Prognosis via Dual-Stream Networks

2022-06-12 16:29:56
Pei Liu, Bo Fu, Feng Ye, Rui Yang, Bin Xu, Luping Ji

Abstract

The cancer prognosis on gigapixel Whole-Slide Images (WSIs) has always been a challenging task. Most existing approaches focus solely on single-resolution images. The multi-resolution schemes, utilizing image pyramids to enhance WSI visual representations, have not yet been paid enough attention to. In order to explore a multi-resolution solution for improving cancer prognosis accuracy, this paper proposes a dual-stream architecture to model WSIs by an image pyramid strategy. This architecture consists of two sub-streams: one is for low-resolution WSIs, and the other is especially for high-resolution ones. Compared to other approaches, our scheme has three highlights: (i) there exists a one-to-one relation between stream and resolution; (ii) a square pooling layer is added to align the patches from two resolution streams, largely reducing computation cost and enabling a natural stream feature fusion; (iii) a cross-attention-based method is proposed to pool high-resolution patches spatially under the guidance of low-resolution ones. We validate our scheme on three publicly-available datasets, a total number of 3,101 WSIs from 1,911 patients. Experimental results verify that (1) hierarchical dual-stream representation is more effective than single-stream ones for cancer prognosis, gaining an average C-Index rise of 5.0% and 1.8% on a single low-resolution and high-resolution stream, respectively; (2) our dual-stream scheme could outperform current state-of-the-art ones, by a 5.1% average improvement of C-Index; (3) the cancer diseases with observable survival differences could have different preferences for model complexity. Our scheme could serve as an alternative tool for further facilitating WSI prognosis research.

Abstract (translated)

URL

https://arxiv.org/abs/2206.05782

PDF

https://arxiv.org/pdf/2206.05782.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot