Paper Reading AI Learner

Fast building segmentation from satellite imagery and few local labels

2022-06-10 23:39:21
Caleb Robinson, Anthony Ortiz, Hogeun Park, Nancy Lozano Gracia, Jon Kher Kaw, Tina Sederholm, Rahul Dodhia, Juan M. Lavista Ferres

Abstract

Innovations in computer vision algorithms for satellite image analysis can enable us to explore global challenges such as urbanization and land use change at the planetary level. However, domain shift problems are a common occurrence when trying to replicate models that drive these analyses to new areas, particularly in the developing world. If a model is trained with imagery and labels from one location, then it usually will not generalize well to new locations where the content of the imagery and data distributions are different. In this work, we consider the setting in which we have a single large satellite imagery scene over which we want to solve an applied problem -- building footprint segmentation. Here, we do not necessarily need to worry about creating a model that generalizes past the borders of our scene but can instead train a local model. We show that surprisingly few labels are needed to solve the building segmentation problem with very high-resolution (0.5m/px) satellite imagery with this setting in mind. Our best model trained with just 527 sparse polygon annotations (an equivalent of 1500 x 1500 densely labeled pixels) has a recall of 0.87 over held out footprints and a R2 of 0.93 on the task of counting the number of buildings in 200 x 200-meter windows. We apply our models over high-resolution imagery in Amman, Jordan in a case study on urban change detection.

Abstract (translated)

URL

https://arxiv.org/abs/2206.05377

PDF

https://arxiv.org/pdf/2206.05377.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot