Paper Reading AI Learner

BaIT: Barometer for Information Trustworthiness

2022-06-15 13:42:55
Oisín Nolan, Jeroen van Mourik, Callum Tilbury

Abstract

This paper presents a new approach to the FNC-1 fake news classification task which involves employing pre-trained encoder models from similar NLP tasks, namely sentence similarity and natural language inference, and two neural network architectures using this approach are proposed. Methods in data augmentation are explored as a means of tackling class imbalance in the dataset, employing common pre-existing methods and proposing a method for sample generation in the under-represented class using a novel sentence negation algorithm. Comparable overall performance with existing baselines is achieved, while significantly increasing accuracy on an under-represented but nonetheless important class for FNC-1.

Abstract (translated)

URL

https://arxiv.org/abs/2206.07535

PDF

https://arxiv.org/pdf/2206.07535.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot