Paper Reading AI Learner

Deep Learning and Handheld Augmented Reality Based System for Optimal Data Collection in Fault Diagnostics Domain

2022-06-15 19:15:26
Ryan Nguyen, Rahul Rai

Abstract

Compared to current AI or robotic systems, humans navigate their environment with ease, making tasks such as data collection trivial. However, humans find it harder to model complex relationships hidden in the data. AI systems, especially deep learning (DL) algorithms, impressively capture those complex relationships. Symbiotically coupling humans and computational machines' strengths can simultaneously minimize the collected data required and build complex input-to-output mapping models. This paper enables this coupling by presenting a novel human-machine interaction framework to perform fault diagnostics with minimal data. Collecting data for diagnosing faults for complex systems is difficult and time-consuming. Minimizing the required data will increase the practicability of data-driven models in diagnosing faults. The framework provides instructions to a human user to collect data that mitigates the difference between the data used to train and test the fault diagnostics model. The framework is composed of three components: (1) a reinforcement learning algorithm for data collection to develop a training dataset, (2) a deep learning algorithm for diagnosing faults, and (3) a handheld augmented reality application for data collection for testing data. The proposed framework has provided above 100\% precision and recall on a novel dataset with only one instance of each fault condition. Additionally, a usability study was conducted to gauge the user experience of the handheld augmented reality application, and all users were able to follow the provided steps.

Abstract (translated)

URL

https://arxiv.org/abs/2206.07772

PDF

https://arxiv.org/pdf/2206.07772.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot