Paper Reading AI Learner

Search-Based Testing Approach for Deep Reinforcement Learning Agents

2022-06-15 20:51:33
Amirhossein Zolfagharian, Manel Abdellatif, Lionel Briand, Mojtaba Bagherzadeh, Ramesh S

Abstract

Deep Reinforcement Learning (DRL) algorithms have been increasingly employed during the last decade to solve various decision-making problems such as autonomous driving and robotics. However, these algorithms have faced great challenges when deployed in safety-critical environments since they often exhibit erroneous behaviors that can lead to potentially critical errors. One way to assess the safety of DRL agents is to test them to detect possible faults leading to critical failures during their execution. This raises the question of how we can efficiently test DRL policies to ensure their correctness and adherence to safety requirements. Most existing works on testing DRL agents use adversarial attacks that perturb states or actions of the agent. However, such attacks often lead to unrealistic states of the environment. Their main goal is to test the robustness of DRL agents rather than testing the compliance of agents' policies with respect to requirements. Due to the huge state space of DRL environments, the high cost of test execution, and the black-box nature of DRL algorithms, the exhaustive testing of DRL agents is impossible. In this paper, we propose a Search-based Testing Approach of Reinforcement Learning Agents (STARLA) to test the policy of a DRL agent by effectively searching for failing executions of the agent within a limited testing budget. We use machine learning models and a dedicated genetic algorithm to narrow the search towards faulty episodes. We apply STARLA on a Deep-Q-Learning agent which is widely used as a benchmark and show that it significantly outperforms Random Testing by detecting more faults related to the agent's policy. We also investigate how to extract rules that characterize faulty episodes of the DRL agent using our search results. Such rules can be used to understand the conditions under which the agent fails and thus assess its deployment risks.

Abstract (translated)

URL

https://arxiv.org/abs/2206.07813

PDF

https://arxiv.org/pdf/2206.07813.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot