Paper Reading AI Learner

Improved surface reconstruction using high-frequency details

2022-06-15 23:46:48
Yiqun Wang, Ivan Skorokhodov, Peter Wonka

Abstract

Neural rendering can be used to reconstruct implicit representations of shapes without 3D supervision. However, current neural surface reconstruction methods have difficulty learning high-frequency details of shapes, so that the reconstructed shapes are often oversmoothed. We propose a novel method to improve the quality of surface reconstruction in neural rendering. We follow recent work to model surfaces as signed distance fields. First, we offer a derivation to analyze the relationship between the signed distance function, the volume density, the transparency function, and the weighting function used in the volume rendering equation. Second, we observe that attempting to jointly encode high-frequency and low frequency components in a single signed distance function leads to unstable optimization. We propose to decompose the signed distance function in a base function and a displacement function together with a coarse-to-fine strategy to gradually increase the high-frequency details. Finally, we propose to use an adaptive strategy that enables the optimization to focus on improving certain regions near the surface where the signed distance fields have artifacts. Our qualitative and quantitative results show that our method can reconstruct high-frequency surface details and obtain better surface reconstruction quality than the current state of the art. Code will be released at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2206.07850

PDF

https://arxiv.org/pdf/2206.07850.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot