Paper Reading AI Learner

Delving into the Scale Variance Problem in Object Detection

2022-06-16 14:52:17
Junliang Chen, Xiaodong Zhao, Linlin Shen

Abstract

Object detection has made substantial progress in the last decade, due to the capability of convolution in extracting local context of objects. However, the scales of objects are diverse and current convolution can only process single-scale input. The capability of traditional convolution with a fixed receptive field in dealing with such a scale variance problem, is thus limited. Multi-scale feature representation has been proven to be an effective way to mitigate the scale variance problem. Recent researches mainly adopt partial connection with certain scales, or aggregate features from all scales and focus on the global information across the scales. However, the information across spatial and depth dimensions is ignored. Inspired by this, we propose the multi-scale convolution (MSConv) to handle this problem. Taking into consideration scale, spatial and depth information at the same time, MSConv is able to process multi-scale input more comprehensively. MSConv is effective and computationally efficient, with only a small increase of computational cost. For most of the single-stage object detectors, replacing the traditional convolutions with MSConvs in the detection head can bring more than 2.5\% improvement in AP (on COCO 2017 dataset), with only 3\% increase of FLOPs. MSConv is also flexible and effective for two-stage object detectors. When extended to the mainstream two-stage object detectors, MSConv can bring up to 3.0\% improvement in AP. Our best model under single-scale testing achieves 48.9\% AP on COCO 2017 \textit{test-dev} split, which surpasses many state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/2206.08227

PDF

https://arxiv.org/pdf/2206.08227.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot