Paper Reading AI Learner

How Adults Understand What Young Children Say

2022-06-15 20:37:32
Stephan C. Meylan, Ruthe Foushee, Nicole H. Wong, Elika Bergelson, Roger P. Levy

Abstract

Children's early speech often bears little resemblance to adult speech in form or content, and yet caregivers often find meaning in young children's utterances. Precisely how caregivers are able to do this remains poorly understood. We propose that successful early communication (an essential building block of language development) relies not just on children's growing linguistic knowledge, but also on adults' sophisticated inferences. These inferences, we further propose, are optimized for fine-grained details of how children speak. We evaluate these ideas using a set of candidate computational models of spoken word recognition based on deep learning and Bayesian inference, which instantiate competing hypotheses regarding the information sources used by adults to understand children. We find that the best-performing models (evaluated on datasets of adult interpretations of child speech) are those that have strong prior expectations about what children are likely to want to communicate, rather than the actual phonetic contents of what children say. We further find that adults' behavior is best characterized as well-tuned to specific children: the more closely a word recognition model is tuned to the particulars of an individual child's actual linguistic behavior, the better it predicts adults' inferences about what the child has said. These results offer a comprehensive investigation into the role of caregivers as child-directed listeners, with broader consequences for theories of language acquisition.

Abstract (translated)

URL

https://arxiv.org/abs/2206.07807

PDF

https://arxiv.org/pdf/2206.07807.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot