Paper Reading AI Learner

A Graph-Enhanced Click Model for Web Search

2022-06-17 08:32:43
Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Shuai Li, Ruiming Tang, Xiuqiang He, Jianye Hao, Yong Yu

Abstract

To better exploit search logs and model users' behavior patterns, numerous click models are proposed to extract users' implicit interaction feedback. Most traditional click models are based on the probabilistic graphical model (PGM) framework, which requires manually designed dependencies and may oversimplify user behaviors. Recently, methods based on neural networks are proposed to improve the prediction accuracy of user behaviors by enhancing the expressive ability and allowing flexible dependencies. However, they still suffer from the data sparsity and cold-start problems. In this paper, we propose a novel graph-enhanced click model (GraphCM) for web search. Firstly, we regard each query or document as a vertex, and propose novel homogeneous graph construction methods for queries and documents respectively, to fully exploit both intra-session and inter-session information for the sparsity and cold-start problems. Secondly, following the examination hypothesis, we separately model the attractiveness estimator and examination predictor to output the attractiveness scores and examination probabilities, where graph neural networks and neighbor interaction techniques are applied to extract the auxiliary information encoded in the pre-constructed homogeneous graphs. Finally, we apply combination functions to integrate examination probabilities and attractiveness scores into click predictions. Extensive experiments conducted on three real-world session datasets show that GraphCM not only outperforms the state-of-art models, but also achieves superior performance in addressing the data sparsity and cold-start problems.

Abstract (translated)

URL

https://arxiv.org/abs/2206.08621

PDF

https://arxiv.org/pdf/2206.08621.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot