Paper Reading AI Learner

DECK: Model Hardening for Defending Pervasive Backdoors

2022-06-18 19:46:06
Guanhong Tao, Yingqi Liu, Siyuan Cheng, Shengwei An, Zhuo Zhang, Qiuling Xu, Guangyu Shen, Xiangyu Zhang

Abstract

Pervasive backdoors are triggered by dynamic and pervasive input perturbations. They can be intentionally injected by attackers or naturally exist in normally trained models. They have a different nature from the traditional static and localized backdoors that can be triggered by perturbing a small input area with some fixed pattern, e.g., a patch with solid color. Existing defense techniques are highly effective for traditional backdoors. However, they may not work well for pervasive backdoors, especially regarding backdoor removal and model hardening. In this paper, we propose a novel model hardening technique against pervasive backdoors, including both natural and injected backdoors. We develop a general pervasive attack based on an encoder-decoder architecture enhanced with a special transformation layer. The attack can model a wide range of existing pervasive backdoor attacks and quantify them by class distances. As such, using the samples derived from our attack in adversarial training can harden a model against these backdoor vulnerabilities. Our evaluation on 9 datasets with 15 model structures shows that our technique can enlarge class distances by 59.65% on average with less than 1% accuracy degradation and no robustness loss, outperforming five hardening techniques such as adversarial training, universal adversarial training, MOTH, etc. It can reduce the attack success rate of six pervasive backdoor attacks from 99.06% to 1.94%, surpassing seven state-of-the-art backdoor removal techniques.

Abstract (translated)

URL

https://arxiv.org/abs/2206.09272

PDF

https://arxiv.org/pdf/2206.09272.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot