Paper Reading AI Learner

Visualizing and Understanding Self-Supervised Vision Learning

2022-06-20 13:01:46
Fawaz Sammani, Boris Joukovsky, Nikos Deligiannis

Abstract

Self-Supervised vision learning has revolutionized deep learning, becoming the next big challenge in the domain and rapidly closing the gap with supervised methods on large computer vision benchmarks. With current models and training data exponentially growing, explaining and understanding these models becomes pivotal. We study the problem of explainable artificial intelligence in the domain of self-supervised learning for vision tasks, and present methods to understand networks trained with self-supervision and their inner workings. Given the huge diversity of self-supervised vision pretext tasks, we narrow our focus on understanding paradigms which learn from two views of the same image, and mainly aim to understand the pretext task. Our work focuses on explaining similarity learning, and is easily extendable to all other pretext tasks. We study two popular self-supervised vision models: SimCLR and Barlow Twins. We develop a total of six methods for visualizing and understanding these models: Perturbation-based methods (conditional occlusion, context-agnostic conditional occlusion and pairwise occlusion), Interaction-CAM, Feature Visualization, Model Difference Visualization, Averaged Transforms and Pixel Invaraince. Finally, we evaluate these explanations by translating well-known evaluation metrics tailored towards supervised image classification systems involving a single image, into the domain of self-supervised learning where two images are involved. Code is at: this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2206.09753

PDF

https://arxiv.org/pdf/2206.09753.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot