Paper Reading AI Learner

Recognising Affordances in Predicted Futures to Plan with Consideration of Non-canonical Affordance Effects

2022-06-22 09:01:01
Solvi Arnold, Mami Kuroishi, Tadashi Adachi, Kimitoshi Yamazaki

Abstract

We propose a novel system for action sequence planning based on a combination of affordance recognition and a neural forward model predicting the effects of affordance execution. By performing affordance recognition on predicted futures, we avoid reliance on explicit affordance effect definitions for multi-step planning. Because the system learns affordance effects from experience data, the system can foresee not just the canonical effects of an affordance, but also situation-specific side-effects. This allows the system to avoid planning failures due to such non-canonical effects, and makes it possible to exploit non-canonical effects for realising a given goal. We evaluate the system in simulation, on a set of test tasks that require consideration of canonical and non-canonical affordance effects.

Abstract (translated)

URL

https://arxiv.org/abs/2206.10920

PDF

https://arxiv.org/pdf/2206.10920.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot