Paper Reading AI Learner

Heterogeneous Graph Neural Networks for Software Effort Estimation

2022-06-22 12:46:02
Hung Phan, Ali Jannesari

Abstract

Software effort can be measured by story point [35]. Current approaches for automatically estimating story points focus on applying pre-trained embedding models and deep learning for text regression to solve this problem which required expensive embedding models. We propose HeteroSP, a tool for estimating story points from textual input of Agile software project issues. We select GPT2SP [12] and Deep-SE [8] as the baselines for comparison. First, from the analysis of the story point dataset [8], we conclude that software issues are actually a mixture of natural language sentences with quoted code snippets and have problems related to large-size vocabulary. Second, we provide a module to normalize the input text including words and code tokens of the software issues. Third, we design an algorithm to convert an input software issue to a graph with different types of nodes and edges. Fourth, we construct a heterogeneous graph neural networks model with the support of fastText [6] for constructing initial node embedding to learn and predict the story points of new issues. We did the comparison over three scenarios of estimation, including within project, cross-project within the repository, and cross-project cross repository with our baseline approaches. We achieve the average Mean Absolute Error (MAE) as 2.38, 2.61, and 2.63 for three scenarios. We outperform GPT2SP in 2/3 of the scenarios while outperforming Deep-SE in the most challenging scenario with significantly less amount of running time. We also compare our approaches with different homogeneous graph neural network models and the results show that the heterogeneous graph neural networks model outperforms the homogeneous models in story point estimation. For time performance, we achieve about 570 seconds as the time performance in both three processes: node embedding initialization, model construction, and story point estimation.

Abstract (translated)

URL

https://arxiv.org/abs/2206.11023

PDF

https://arxiv.org/pdf/2206.11023.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot